
dEk :4~r~P~ 3+m (t-- 4/D4)]2 ' (12) 

1" I 

where Ek=4~r2dr is the kinetic energy of the moving gas. 
0 

We note that when Mo § 0, systems (7)-(12) convert to the corresponding equations in [I]. 
From the conditions (6) when m = 0 and po/Px << i, it follows that the initial dispersion of 
the mass released takes place under the self-similar conditions considered in 13]. When m ffi 
0, the distributions (6) are satisfied by the equation of continuity (I) for any function 
rx(t). 

As initial values for the problem of numerical computation when t = 0, we take r T ffi 30 
m 3 " 3 - - 0  m, rl = 0, ~ = 0.5, m = 0, 0o 1.29 kg/m . Consequently, for t = 0, p~rl - 3Mo/4~. 

Figure i shows the relations between the radii of the thermal and shock waves and the 
time. Curves 1-3 correspond to the values Mo = 0 (self-similar Solution [4]), 0.i, and i0 t. 
It can be seen that the mass released depends significantly on the conditions of propagation 
of the thermal and shock waves. 
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DEVELOPMENT OF DYNAMIC PERTURBATIONS IN INITIAL STAGE OF A POINT 

EXPLOSION IN A THERMALLY CONDUCTING GAS 

V. P. Shidlovskii UDC 533.6.011,534.222.2 

The one-dimensional perturbations originating in a cold homogeneous gas (T~ = 0, 
px = const) by the instantaneous release of finite energy at the origin of the co- 
ordinates are considered. The starting equations are compiled for a gas in which 
the heat-transfer mechanism is simulated by a nonlinear thermal conductivity with 
coefficient % ~ T n. Transformation of the equations to the dimensionless form by 
the introduction of "natural" variable allows the simplest path for investigating 
the process as a whole to be shown by means of the method of perturbations. The 
initial approximation corresponds to the well-known solution for a thermal wave 
[i], while subsequent approximations describe the joint development of both thermal 
and dynamic perturbations. An investigation of the properties of the solutions and 
an example of the calculation of the first two approximations (without taking ac- 
count of the starting approximation) for the case of a point spherical explosion 
with n = 5 gives a representation of the formation of the shock wave. 

When studying an explosion in a gas, it is of great importance to take into account the 
actual heat-transfer processes. This is especially important in the very first stage of the 
explosion or, as observations and theoretical investigations [2] show, the thermal wave 
originates during the explosion even before the appearance of the dynamic nature of the 
phenomenon. The heat-transfer mechanism, in this case, is due mainly to the effect of radia- 
tion, but if we neglect the pressure and the radiation energy, then a completely acceptable 
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description of this mechanism is provided by the nonlinear thermal-conductivity model. The 
investigation of the thermal waves originating in a cold gas in the case of nonlinear thermal 
conductivity is given in [I]. A more general approach_ is proposed below, which takes into 
account not only thermal but also dynamic processes. 

w The system of equations which is suitable for describing the one-dimensional ir- 
regular processes in a thermally conducting gas is written in the form 

0-t" ~ r  -{-lo ~ -~- Lr ] Z~"-I"V"~'r @ - ~ r  = 0 ,  

p = (• - -  t )  pe, 

where t is the time; r is a coordinate; p, v, p, and e are the density, velocity, pressure, 
and internal energy of the gas, respectively (e = c V T); x = Cp/Cv; and ~ is the parameter 
of symmetry (y = i, 2, 3). 

The thermal-conductivity coefficient of the gas ~ is assumed to be expressed by the 
formula 

X = cvAe tt (A, n = const) .  

If the initial temperature of the gas can be assumed equal to zero, then for any value 
of t > 0 the region of the perturbed state will be bounded by the perturbation front r = 
rf(t). In the case of a point explosion, when for t ~ 0 at the origin of the coordinates a 
finite energy E is released, the initial and boundary conditions are formulated in the form 

p = e = v = O ,  ] for t = 0 ,  
P = P~, ;~Oe/Or = 0t for t 2> 0, r = r s, ( i .  2)  
v = ~,OelOr =/0 for t > 0, r = 0, 

where the initial density px will be assumed constant. In addition to this, the integral 
condition of constancy of the total energy of the perturbed gas volume must be satisfied 

rf 

~ p ( e + v = / 2 ) r v - - ~ d r = E ,  ~ = 2 ( ~ - - t ) z c + ( ~ , - - 2 ) ( v ~ 3 ) / 2 ,  E : c o n ~ t .  C1 .3 )  U 
o 

Equations (i.i) can be conveniently converted to dimensionless form by introducing the 
new arguments 

r A u2n-- i 
- - 9  ~l = r ] '  X ::: ( •  i ) ~  p~r,] ( 1 . 4 )  

where U = drf/dt is the propagation velocity of the perturbation front. These arguments can 
be called natural as the first of them represents the normalized space coordinate and the 
second one a natural dimensionless combination depending on the time and which does not 
contain the coordinate r. 

Transformation of the required variables is also effected by the introduction of "natur- 
al" scales 

v = UVbl, z), p - p~R(~, ~), p = p~U2t,(~l, x), 

e = (• - -  t)-IU~N(~I, X), X = CvplriUxNn(rl, X)- 

After conversion to the new variable, Eqs. (1.1) assume the form 

OB OR OV v -  1 ( v - n ) - N  ' K Z ~ + R  ~ g v = o ,  

[ OV Ovl oP R Z V + ( V - - r O - ~ + K x - ~  + ~ f i - - = 0 ,  
(i. 5) 

ozr {or " - ~  v ~ l =  B i2ZN + (V - -  'l) v,a ~ + K~ - ~  + (• - -  t) N + - -  
L rl 
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Here the notation 

Z(X) = (dU/dt)rjU -~, K(X) = ( 2 n -  t ) Z ( x ) -  i .  ( 1 . 6 )  

is introduced. 

The boundary conditions obtained from Eq. (1.2) have the form 

R = t,  P - - - N =  V = N n d N / O ~ I  = 0  for ~1= t ,  ( 1 . 7 )  

V = N n dN/Orl = 0 for ~1 = O. 

Before transforming condition (1.3), we introduce the new function 

! 

(x) = j R [(• - t ) - i ~ ,  + w/i] #,-ida. 
0 

T a k i n g  a c c o u n t  o f  t h e  n o t a t i o n  i n  Eq. ( 1 . 6 ) ,  c o n d i t i o n  ( 1 . 3 )  can  be  r e p r e s e n t e d  i n  t h e  f o r m  

%Kd~F/dx q- ( iZ + ~)W = O. 

w Resulting from the determination (1.4) of the variable X now replacing the time, 
the following can be substituted. The limit X § 0 corresponds to the conversion of Eq. 
(1.5) to the equation for the adiabatic self-similar motion of a gas during a powerful ex- 
plosion [3]. The physical properties of the phenomenon being considered confirm that this 
limit corresponds to an infinitely large time t § ~. Introducing the natural assumption that 
the function X(t) is monotonic, we arrive at the conclusion that the initial stage of the 
process being investigated corresponds to the limit X + ~. We shall try to find the limiting 
form of Eq. CI.5) for large values of X, assuming that it will not contain an explicit de- 
pendence on X and in the energy equation, both the term linked with the thermal conductivity 
and also the term defining the change with time, must be conserved. For this purpose, we 
change the scales of part of the unknown variables by introducing new functions accordl~ng to 
the formulas 

N = B%=](~I, %), V = %=/~g(~l, %), P = B%~h(rl, %), (2.1)_ 

where B is a normalized constant [B = 0(i)] introduced for the convenience of comparison 
with the solutions obtained earlier. The condition referred to above, relative to the order 
of magnitude of the terms of the energy equation, allows us to find 

a = - - t / n .  ( 2 . 2 )  

Equations (1.5), taking Eqs. (2.1) and (2.2) into account, assume the form 

_ _  OR OR n t o g  _.}_ __~v-- i g )  = (Z--t/2'~g 11) --~ q- KX --~ + X--t/z R [--~ . O, 

[ og] ,_,2.Bob 1t Zg_L(X_t/ing__~l), Og ~-nKg--~-Kx--~% -~- ,~ Or 1 = 0 ,  
On (2.3) 

-- K[ --. - - +  o/ _~ of R [2gf -}- (%-t/2ng __ .q) ~ __ KZ OX 

System (2.3) has a form which is very suitable not only for obtaining the limiting form 
of the equations for X § ~, but also for constructing the solutions which correspond to the 
finite form, although.fo ~ cuite large values of X. A number of terms occurring in Eq. (2.3) 
contain the factor X -s and it will be natural to try to find these solutions in the form 
of series 

F (~h X) : Fo 01) -k ~ Z-~/2'~Fi (~,  ( 2 . 4 )  

where F is any of the functions f, g, h, or R. Similar series can also be used for repre- 
senting the functions Z(X) and K(X) for large values of X. 

If we substitute function (2.4) in Eq. (2.3) and convert to the limit X § ~, we obtain 
the equations of the initial approximation, i.e., the limiting form of the starting equations 
corresponding to the initial stage of the explosion: 
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[< , ) dRodrl = 0, R o Zo - -  ~ Ko go - -  rt--~--] 

b~ ~/o] ~ ( d/~+~ 1 B o ~  [2(Zo ~ - -  ~ K o ) / o  = vll-v 

We shall suppose that the constant B which occurs in formula (2.1) is equal to 

vn + 2 

Taking into account the boundary conditions Ro(1) = i, go(i) ~ 0, obtained from Eq. 
(1.7), we obtain Ro - i and go - O. 

Let us return to condition (!.8). In accordance with Eq. (2.1), we assume 

~F (X) = Z--tm (ao + ~ Z-V2~a O, ( 2 . 5 )  

where ao and a i are certain numbers. In the initial approximation we obtain 

--Ko/n + 2Zo + v = 0, 
whence, taking account of Eq. (1.6), it follows that 

Zo = --@n + 1), Ko = - - n [ v ( 2 n - -  t) + 21, 

and, in accordance with the definition of Z, the law of motion of the perturbation front is 
also established 

rf = ~t V(vn+ 2), 

where the constant factor y can be expressed in terms of the defining parameters of the prob- 
lem, including the energy E. 

Thus, the construction of the initial approximation reduces to the solution of the 
single equation 

d (  df~ ~-i ) by d 
d,---[ ~v--i d,1 vn-~ 2 dq (~qV~o) (2 .6 )  

with the boundary conditions 

/o (t) .... ( di~+ ~ /d~)n=l = O. 

Equation (2.6) coincides in accuracy with the equation of the thermal wave problem [4], 
which was obtained without association with the dynamic problem. The solution of Eq. (2.6) 
has the form 

nb v 

/0=Df'(i--~2)t/n, OT= 2(n+l)(vn+2) " (2 .7 )  

The g r aph  o f  t h e  f u n c t i o n  f o ( ~ )  i s  shown i n  F i g .  1.  

w Let us carry out the construction of the functions of the first approximation. 
From the first equation of system (2.3) and from the condition R~(I) = 0, R~ ~ 0 can be 
found. For the function fl, an equation of the form 

t--v d [ �9 d |  ] (n+l)(vn+2)bv [q[~[--v d ( ) -- ZI ] -~-/o �9 -~L~v--1-~-(/~/1) =- -~-.~vfl. (3.1) 

is obtained. 

The parameter Za is unknown beforehand and therefore we represent 

/1 : fi�92 + Z1/12, 
where f~x is the solution of the homogeneous equation obtained from Eq. (3.1). Taking into 

account Eq. (2.7), we obtain fix = C(I-- n2) (l-n)/n If we take into consideration that we 
are interested in values of n > i, the fulfillment of the boundary condition fx1(1) = 0 
proves to be possible only if C = 0, whence flt E 0. 
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F i g .  i Fig. 2 

After this, the parameter al [see Eq. (2.5)] can be represented in the form 

! 

al = ZiB (• -- I) -I .i I12~ ~-Id~ = Ziki 
0 

Equation (1.8) in the approximation being considered, taking account of Eq. ~2.3), has 
the form 

Zi(--Koki/2 -q- ao) = 0. 6 3 . 2 )  

In the general case, the expression in the brackets on the left-hand side of Eq. (3.2) is 
nonzero, whence it follows that Z~ = 0 and, thus, we have finally f~ E 0. 

When calculating the results of the zero approximation, the function g1(~)determines 
the principal term of the expression for the gas velocity. In order to determine gl, we 
obtain the equation (the primes denote differentiation with respect to n). 

~ i  - [~ (n - t) + t] gl  = BI~. ( 3 . 3 )  

After integration of Eq. (3.3), taking account of the boundary condition, we obtain 

gl = B ~ ( ~ - ~ ) + i  j ' /~ - t , ( ,~ -~)~  21d~. ( 3 . 4 )  
t 

Reverting to expression (2.7) and introducing the notation 

X = (~ - -  ~ 2 ) l / n ,  ( 3 . 5 )  

we can rewrite Eq. (3.5) in some other form 

= i [ ~ n - - i ) + ~ ]  

gi  = DIB~ v("-t)+i ~ (t  --  x") - ' E  dx. ( 3 . 6 )  
o 

If n is an odd whole number, then the square in the right-hand side of Eq. (3.6) can be cal- 
culated analytically, but in the general case one should turn to a numerical method. Certain 
characteristic features of the function g~(q) can be shown which appear for any values of g1(n) 
and for any values of n > I. 

At the center of the explosion, formula (3.6) gives gi(0) = 0 with a finite differential 
quotient. 

, 2 B D  I . 

In the vicinity of the front g1(n) behaves the same as fo(q), i.e., as (! --~a)I/n. 

The graph of the function g~(n) for v = 3 and n = 5 is shown in Fig. 2. Despite this 
function specifying a "small perturbation," in its form it is very reminiscent of the discon- 
tinuous function of adiabatic motion. 

The principal term of the dynamic density perturbation is expressed by the function 
Ra(q). The equation for determining this function has the form 

~R~ + n"-~KoR~ -- ~ - ~  ( ~ - - ~ ) '  = 0 (3.7)  

With the condition R2(1) = 0, the solution of Eq. (3.7) can be represented in the form 
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~n gl + _  
R = =  v n + 2  

x _ 1 

2 (~n + t) f - -  dx, ~ n + 2  BDfflv(2n--t)+2 (l  Xn) -~{~2n- t )~ l  

0 
(3.8) 

the solu- where the substitution (3.5) is used again. Just as for the determination of g:, 
tion has been reduced to a single square. 

Using Eq. (3.8), we can show certain properties of the function Ri(n]. Just like the 
function g~(~), at the perturbation front it becomes zero and behaves in the vicinity of this 
point as (i -- ~2)~/n. At the center, it arrives with zero derivative, assuming a finite 
value there: 

B2(O) = - - 2 B D / n ( n  - -  1)[v(2n - -  i) + 2]. 

The result of a numerical calculation of the function Re(n) for ~ = 3 and n = 5 is shown 
in Fig. 3; it can be seen that on a considerable part of the perturbed region the quantity 
R= varies only slightly, maintaining small negative values. The main changes occur near the 
front and, just as in the case of the velocity, the compression wave in the frontal zone 
strongly resembles the shock wave. 

In explaining the tendency to the development of a dynamic temperature perturbation, 
the function f2(n) satisfying the equation 

B " ~ - ~  N ~- '  (i~i~)']'+ n ~ - ' + ~  [ ~ - ~ < ~ - ' ~  '~i~]' = O .  9) 
= ~- 'ZJo  - n ~  '-~ (n~io)" + g~f~ + ( •  - -  t )~ -~ /o  ( ~ - ' g , ) ' .  

should be determined. 

The boundary conditions for f2(~) are obtained from Eq. (1.7) in the form 

/2(I) = 0 ,  ( 1 - - ~ 2 ) / ~ ( ~ )  = 0  ~r ~ = 0and~ = I. 

Parallel with the determination of f=(N), the quantity Z2 must also be found, and there- 
fore the form 

is used again. 

Reverting to the form P(X), 

where 

"/2 = /21  + ZJ22 

in accordance with Eq. 

a 2 = a~l + Z~a~:, 

(2.5), we obtain likewise 

1 

a~l = y [B(•  - -  ~)--~ (foRe + / ~ t )  + g~/2]~ V- 'd~ ;  
o 

t r 
B a2~=  ( •  - t j ] 2 ~  d~. 

0 

I f  t h e  f u n c t i o n s  f 2 ,  and  f 2 2  a r e  d e t e r m i n e d ,  t h e n  t h e  q u a n t i t i e s  a2~ and a22  c a n  a l s o  
be found, after which, by means of Eq. (1.8), we obtain 

Z~ = al lKo/ (a  o - -  a~Ko) .  

The graph of the function f2(~) for these same parameters ~ = 3 and n = 5 is shown in 
Fig. 4. The number of boundary conditions for Eqs. (3.3) and (3.9) is greater by unity than 
the order of the equations themselves. Fulfillment of the "superfluous" boundary conditions 
is ensured here because of the properties of the equations themselves; however, in principle, 
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we are not obliged to limit the required solutions only to the class of continuous functions. 
From both theoretical considerations and analysis of the experimental data, it is well known 
(see, for example, [2]), that in the region between the center of the explosion and the per- 
turbation front, with defined conditions, strong discontinuities can originate. Under the 
conditions of the example chosen and within the framework of the approximations considered 
here, these discontinuities are not developed. 
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REPRESENTATION OF INTERACTION IN THE THEORY OF TURBULENCE 

G. A. Kuz'min and A. Z. Patashinskii UDC 532.517.4 

The concept that in a turbulent flow energy exchanges only take place of pulsa- 
tions of near scales is the basis of macroscopic theory of local turbulence struc- 
ture. Universality and similarity of small-scale statistical pulsations are in- 
ferred from the assumption that the energy exchange is of random character. In 
the Eulerian equations of motion, together with the interactions which implement 
the energy exchange between pulsations, there are fictitious interactions related 
to the transfer of pulsations of a given scale I by the pulsations of scales l' >> 
I. It was emphasized in [2, 3] that in the Eulerian description of turbulence 
the effect of transfer results in a strong statistical dependence of pulsations 
of different scales. Therefore, the universality and similarity of small-scale 
pulsations can be observed only in these variables in which there are no effects 
of pure transfer of some pulsations by the others. Qualitative considerations 
were therefore given in [1-3] on the need for describing small-scale pulsations 
in a reference system which is in motion at each point with all large-scale pulsa- 
tions. It is shown in the present article that such description of small-scale 
pulsations can be implemented with the aid of transfer representation similar to 
the representation of interaction in the quantum field theory [4]. Representation 
of interaction is of intermediate position between the Lagrangian and Eulerian 
descriptions of turbulence, since a transfer of a packet as an entity can be 
described in variables which are Lagrangian only as regards large-scale motions. 
Another way of eliminating transfer interactions is based on the introduction of 
nonsolenoid velocity as in [5]. From the physical point of view, the method 
employed in this article seems to be more appropriate. 

First, the case of the scalar field q~(x, t) is considered; its entire evolution in time 
is related to the transfer of the field ~ to the velocity field v(x, t). The part of the 
field ~ can be taken, for example, by the concentration of a passive admixture in a turbulent 
flow. The equation for ~ is 

Ocp/Ot + (vv)cp = O. (1)  

By integrating (1) with respect to time one obtains the integral equation 
t 

q~ (x, t) := r (x, to) - .[ d-r (v (x, .r) V) �9 (x, , ) .  
to 
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